

Welcome to PHPBench’s documentation!

PHPBench is a benchmarking framework for PHP. Find it on Github [https://github.com/phpbench/phpbench].

Book

	Introduction
	Why PHPBench?

	Are There Other Benchmarking Frameworks?

	Installing
	Install as a PHAR package

	Composer Install

	Composer Global Install

	Quick Start
	Create your project

	PHPBench configuration

	Creating and running a benchmark

	Increase Stability

	Customize Reports

	Configuration

	Writing Benchmarks
	Improving Precision: Revolutions

	Verifying and Improving Stability: Iterations

	Subject (runtime) State: Before and After

	Benchmark (external) State: Before and After

	Parameterized Benchmarks

	Groups

	Skipping Subjects

	Extending Existing Array Values

	Recovery Period: Sleeping

	Microseconds to Minutes: Time Units

	Mode: Throughput Representation

	Warming Up: Getting ready for the show

	Timeout: Bailing when things take too long

	Assertions

	Benchmark Runner
	Running Benchmarks

	Filtering

	Overriding Iterations and Revolutions

	Overriding the Bootstrap

	Assertions: Overriding and Toleration

	Generating Reports

	Retry Threshold

	Changing the Output Medium

	Deferring Report Generation

	Comparing Results

	Progress Reporters

	Configuration File

	Exit codes

	Reports
	Generating Reports

	Configuring Reports

	Table Generator

	Default Reports

	Storage and Querying
	Configuring a Storage Driver

	Storing Results

	Viewing the History

	Report Generation

	Pseudo UUIDs

	Querying

	Archiving

	Environment
	GIT

	PHP

	Uname

	Unix Sysload

	Baseline

	Report Generators
	table

	composite

	env

	Report Renderers
	console

	xslt

	delimited

	debug

	Asserters
	comparator

	Configuration
	Bootstrap

	Path

	Progress Logger

	Retry Threshold

	Reports

	Outputs

	Time Unit and Mode

	PHP Binary and INI settings

	Prefixing the Benchmarking Process

	Customizing the subject matching pattern

	Disable the PHP INI file

	FAQ
	Why does PHPBench slow on Windows?

	Why does PHPBench look terrible on Windows?

	Why do setUp and tearDown methods not automatically get called?

Extensions

	Xdebug

	DBAL

	PHPBench Reports

	Custom Extensions

Indices and tables

	Index

	Module Index

	Search Page

Introduction

PHPBench is a benchmark runner for PHP. It enables you to write standard
benchmarks for your application and classes and helps you to make smart
decisions based on comparative results.

Features at a glance:

	Revolutions and Iterations: Spin and repeat.

	Process Isolation: Benchmarks are run in separate processes with no
significant overhead from the runner.

	Reporting: Powerful and extensible reports.

	Deferred Reporting: Dump benchmarking results to an XML file and report
on them later.

	Memory Usage: Keep an eye on the amount of memory used by benchmarking
subjects.

Why PHPBench?

Performance can be monitored and measured in a number of ways: profiling (via.
Xdebug [http://xdebug.org] or Blackfire [https://blackfire.io/]), injecting timing classes (e.g. Symfony Stopwatch [http://symfony.com/doc/current/components/stopwatch.html], Hoa
Bench [http://hoa-project.net/En/Literature/Hack/Bench.html]) or with server tools such as NewRelic [http://newrelic.com].

PHPBench differs from these tools in that it allows you to benchmark explicit
scenarios independently of the application context, and to run these scenarios
multiple times in order to obtain a degree of confidence about the stability
of the results.

As a tool it is analogous to the test framework PHPUnit [http://phpunit.de], but instead of tests we run
benchmarks and generate reports.

Are There Other Benchmarking Frameworks?

You can try Athletic [https://github.com/polyfractal/athletic] .

Installing

PHPBench can be installed either as dependency for your project or as a global
package.

Install as a PHAR package

Installing as a PHAR is convenient, you will need to download the
phar [https://phpbench.github.io/phpbench/phpbench.phar] and the public key [https://phpbench.github.io/phpbench/phpbench.phar.pubkey], this can be
done with CURL as follows:

$ curl -o phpbench.phar https://phpbench.github.io/phpbench/phpbench.phar
$ curl -o phpbench.phar.pubkey https://phpbench.github.io/phpbench/phpbench.phar.pubkey

You will probably then want make it executable and put it in your systems
global path, on Linux systems:

$ chmod 0755 phpbench.phar
$ sudo mv phpbench.phar /usr/local/bin/phpbench
$ sudo mv phpbench.phar.pubkey /usr/local/bin/phpbench.pubkey

You can update the version at any time by using the self-update command:

$ phpbench self-update

Warning

PHPBench is unstable, installing as a PHAR means that you are always
updating to the latest version, the latest version may include BC breaks.
Therefore it is recommended to include the package as a project dependency
for continuous-integration.

Composer Install

To install PHPBench as a dependency of your project:

$ composer require phpbench/phpbench @dev --dev

You may then run PHPBench from your project’s directory as follows:

$./vendor/bin/phpbench

Composer Global Install

You may install PHPBench globally [http://akrabat.com/global-installation-of-php-tools-with-composer/] using composer:

$ composer global require phpbench/phpbench @dev

Note

You will need to add Composer’s global bin directory to your systems
PATH variable (on linux). See the above link.

You may now run PHPBench simply as:

$ phpbench

Quick Start

This tutorial will walk you through creating a typical, simple, project that
uses PHPBench as a dependency. You may also install PHPBench globally, see the
Installing chapter for more information.

You may skip various sections according to your needs and use this as a general
reference.

Create your project

Create a directory for the tutorial:

$ mkdir phpbench-tutorial

And create the following Composer [http://getcomposer.org] file within it:

{
 "name": "acme/phpbench-test",
 "require-dev": {
 "phpbench/phpbench": "^1.0@dev"
 },
 "autoload": {
 "psr-4": {
 "Acme\\": "lib"
 }
 }
}

Now perform a Composer install:

$ composer install

Note

You may also install PHPBench globally, see the Installing
chapter for more information.

PHPBench should now be installed. Now create two directories, benchmarks
and lib which we will need further on:

$ mkdir benchmarks
$ mkdir lib

PHPBench configuration

In order for PHPBench to be able to autoload files from your library, you
should specify the path to your bootstrap file (i.e. vendor/autoload.php).
This can be done in the PHPBench configuration.

Create the file phpbench.json in the projects root directory:

{
 "bootstrap": "vendor/autoload.php"
}

Note

PHPBench does not require a bootstrap (or a configuration file for
that matter). You may omit it if you do not need autoloading, or you want
to include files manually.

Warning

Some PHP extensions such as Xdebug will affect the performance of your
benchmark subjects and you may want to disable them, see Disabling
the PHP INI file.

Creating and running a benchmark

You will need some code to benchmark, create a simple class in lib which
consumes time itself:

<?php

namespace Acme;

class TimeConsumer
{
 public function consume()
 {
 usleep(100);
 }
}

In order to benchmark your code you will need to execute that code within
a method of a benchmarking class. Benchmarking classes MUST have the Bench
suffix and each benchmarking method must be prefixed with bench.

Create the following class in the benchmarks directory:

<?php

use Acme\TimeConsumer;

class TimeConsumerBench
{
 public function benchConsume()
 {
 $consumer = new TimeConsumer();
 $consumer->consume();
 }
}

Now you can execute the benchmark as follows:

$./vendor/bin/phpbench run benchmarks/TimeConsumerBench.php --report=default

And you should see some output similar to the following:

PhpBench 0.8.0-dev. Running benchmarks.

\TimeConsumerBench

 benchConsume I0 P0 [μ Mo]/r: 173.00μs [μSD μRSD]/r: 0.00μs 0.00%

1 subjects, 1 iterations, 1 revs, 0 rejects
⅀T: 173μs μSD/r 0.00μs μRSD/r: 0.00%
min [mean mode] max: 173.00 [173.00 1732.00] 173.00 (μs/r)

+-------------------+---------------+-------+--------+------+------+-----+----------+------------+---------+-------+
| benchmark | subject | group | params | revs | iter | rej | mem | time | z-score | diff |
+-------------------+---------------+-------+--------+------+------+-----+----------+------------+---------+-------+
| TimeConsumerBench | benchConsume | | [] | 1 | 0 | 0 | 265,936b | 173.0000μs | 0.00σ | 1.00x |
+-------------------+---------------+-------+--------+------+------+-----+----------+------------+---------+-------+

You may have guessed that the code was only executed once (as indicated by the
revs column). To achieve a better measurement we should increase the
number of times that the code is consecutively executed.

<?php

// ...

class TimeConsumerBench
{
 /**
 * @Revs(1000)
 */
 public function benchConsume()
 {
 // ...
 }
}

Run the benchmark again and you should notice that the report states that 1000
revolutions were performed. Revolutions in PHPBench
represent the number of times that the code is executed consecutively within a
single measurement.

Currently we only execute the benchmark subject a single time, to verify the
result you should increase the number of iterations using
the @Iterations annotation (either as a replacement or in addition to
@Revs:

<?php

// ...

class TimeConsumerBench
{
 /**
 * @Revs(1000)
 * @Iterations(5)
 */
 public function benchConsume()
 {
 // ...
 }
}

Now when you run the report you should see that it contains 5 rows. One
measurement for each iteration, and each iteration executed the code 1000
times.

Note

You can override the number of iterations and revolutions on the CLI using
the --iterations and --revs options.

At this point it would be better for you to use the aggregate report
rather than default:

$ php vendor/bin/phpbench run benchmarks/TimeConsumerBench.php --report=aggregate

Increase Stability

You will see the columns stdev and rstdev. stdev is the standard
deviation [https://en.wikipedia.org/wiki/Standard_deviation] of the set of iterations and rstdev is relative standard
deviation [https://en.wikipedia.org/wiki/Coefficient_of_variation].

Stability can be inferred from rstdev, with 0% being the best and anything
about 2% should be treated as suspicious.

To increase stability you can use the --retry-threshold to automatically
repeat the iterations until the diff (the
percentage difference from the lowest measurement) fits within a given
threshold:

$ php vendor/bin/phpbench run benchmarks/TimeConsumerBench.php --report=aggregate --retry-threshold=5

Warning

Lower values for retry-threshold, depending on the stability of your
system, generally lead to increased total benchmarking time.

Customize Reports

PHPBench also allows you to customize reports on the command line, try the
following:

$./vendor/bin/phpbench run benchmarks/TimeConsumerBench.php --report='{"extends": "aggregate", "cols": ["subject", "mode"]}'

Above we configure a new report which extends the default report that we
have already used, but we use only the subject and mode columns.
A full list of all the options for the default reports can be found in the
Report Generators chapter.

Configuration

Now to finish off, lets add the path and new report to the configuration file:

{
 ...
 "path": "benchmarks",
 "reports": {
 "consumation_of_time": {
 "extends": "default",
 "title": "The Consumation of Time",
 "description": "Benchmark how long it takes to consume time",
 "cols": ["subject", "mode"]
 }
 }
}

Warning

JSON files are very strict - be sure not to have commas after the final
elements in arrays or objects!

Above you tell PHPBench where the benchmarks are located and you define a new
report, consumation_of_time with a title, description and sort order.

We can now run the new report:

$ php vendor/bin/phpbench run --report=consumation_of_time

Note

Note that we did not specify the path to the benchmark file, by default all
benchmarks under the given or configured path will be executed.

This quick start demonstrated some of the features of PHPBench, but there is
more to discover everything can be found in this manual. Happy benchmarking.

Writing Benchmarks

Benchmark classes have the following characteristics:

	The class and filename must be the same.

	Class methods that start with bench will be executed by the benchrunner
and timed.

PHPBench does not require that the benchmark class be aware of PHPBench
library - it does not need to extend a parent class or implement an interface.

The following is a simple benchmark class:

<?php
// HashBench.php

class HashBench
{
 public function benchMd5()
 {
 hash('md5', 'Hello World!');
 }

 public function benchSha1()
 {
 hash('sha1', 'Hello World!');
 }
}

And it can be executed as follows:

$ phpbench run examples/HashBench.php --progress=dots
PhpBench 0.8.0-dev. Running benchmarks.

...

3 subjects, 30 iterations, 30000 revs, 0 rejects
⅀T: 30543μs μSD/r 0.05μs μRSD/r: 4.83%
min mean max: 0.78 1.02 1.47 (μs/r)

Note

The above command does not generate a report, add --report=default to
view something useful.

PHPBench reads docblock annotations in the benchmark class. Annotations can be
placed in the class docblock, or on individual methods docblocks.

Note

Instead of prefixing a method with bench you can use the
@Subject annotation or specify a custom pattern.

Improving Precision: Revolutions

When testing units of code where microsecond accuracy is important, it is
necessary to increase the number of revolutions performed by the
benchmark runner. The term “revolutions” (invented here) refers to the number
of times the benchmark is executed consecutively within a single time
measurement.

We can arrive at a more accurate measurement by determining the mean time
from multiple revolutions (i.e. time / revolutions) than we could with a
single revolution. In other words, more revolutions means more precision.

Revolutions can be specified using the @Revs annotation:

<?php

/**
 * @Revs(1000)
 */
class HashBench
{
 // ...
}

You may also specify an array:

<?php

/**
 * @Revs({1, 8, 64, 4096})
 */
class HashBench
{
 // ...
}

Revolutions can also be overridden from the command line.

Verifying and Improving Stability: Iterations

Iterations represent the number of times we will perform the benchmark
(including all the revolutions). Contrary to revolutions, a time reading will
be taken for each iteration.

By looking at the separate time measurement of each iteration we can determine
how stable the readings are. The less the measurements differ from each
other, the more stable the benchmark is, and the more you can trust the results.

Note

In a perfect environment the readings would all be exactly the same -
but such an environment is unlikely to exist

Iterations can be specified using the @Iterations annotation:

<?php

/**
 * @Iterations(5)
 */
class HashBench
{
 // ...
}

As with revolutions, you may also specify an array.

Iterations can also be overridden from the command line.

You can instruct PHPBench to continuously run the iterations until the
deviation of each iteration fits within a given margin of error by using the
--retry-threshold. See Retry Threshold for more information.

Subject (runtime) State: Before and After

Any number of methods can be executed both before and after each benchmark
subject using the @BeforeMethods and
@AfterMethods annotations. Before methods are useful for bootstrapping
your environment, for example:

<?php

/**
 * @BeforeMethods({"init"})
 */
class HashBench
{
 private $hasher;

 public function init()
 {
 $this->hasher = new Hasher();
 }

 public function benchMd5()
 {
 $this->hasher->md5('Hello World!');
 }
}

Multiple before and after methods can be specified.

Note

If before and after methods are used when the @ParamProviders
annotations are used, then they will also be passed the parameters.

Benchmark (external) State: Before and After

Sometimes you will want to perform actions which establish an external
state. For example, creating or populating a database, creating files, etc.

This can be achieved by creating static methods within your benchmark
class and adding the @BeforeClassMethods and @AfterClassMethods:

These methods will be executed by the runner once per benchmark class.

<?php

/**
 * @BeforeClassMethods({"initDatabase"})
 */
class DatabaseBench
{
 public static function initDatabase()
 {
 // init database here.
 }

 // ...
}

Note

These methods are static and are executed in a process that is separate
from that from which your iterations will be executed. Therefore state
will not be carried over to your iterations!.

Parameterized Benchmarks

Parameter sets can be provided to benchmark subjects. For example:

<?php

class HashBench
{
 public function provideStrings()
 {
 yield 'hello' => ['string' => 'Hello World!'];
 yield 'goodbye' => ['string' => 'Goodbye Cruel World!'];
 }

 /**
 * @ParamProviders({"provideStrings"})
 */
 public function benchMd5($params)
 {
 hash('md5', $params['string']);
 }
}

The benchMd5 subject will now be benchmarked with each parameter set.

The param provider can return a set of parameters using any iterable.
For example the above could also be retuned as an array:

<?php

class HashBench
{
 public function provideStrings()
 {
 return [
 'hello' => ['string' => 'Hello World!'],
 'goodbye' => ['string' => 'Goodbye Cruel World!']
];
 }
}

Warning

It should be noted that Generators are consumed completely before the
subject is executed. If you have a very large data set, it will be read
completely into memory.

Multiple parameter providers can be used, in which case the data sets will be
combined into a cartesian product [https://en.wikipedia.org/wiki/Cartesian_product] - all possible combinations of the
parameters will be generated, for example:

<?php

class HashBench
{
 public function provideStrings()
 {
 yield 'hello' => ['string' => 'Hello World!'];
 yield 'goodbye' => ['string' => 'Goodbye Cruel World!'];
 }

 public function provideNumbers()
 {
 yield 'md5' => ['algorithm' => 'md5'];
 yield 'sha1' => ['algorithm' => 'sha1'];
 }

 /**
 * @ParamProviders({"provideStrings", "provideNumbers"})
 */
 public function benchHash($params)
 {
 hash($params['algorithm'], $params['string']);
 }
}

Will result in the following parameter benchmark scenarios:

<?php

// #0
['string' => 'Hello World!', 'algorithm' => 'md5'];

// #1
['string' => 'Goodbye Cruel World!', 'algorithm' => 'md5'[;

// #2
['string' => 'Hello World!', 'algorithm' => 'sha1'];

// #3
['string' => 'Goodbye Cruel World!', 'algorithm' => 'sha1'];

Groups

You can assign benchmark subjects to groups using the @Groups annotation.

<?php

/**
 * @Groups({"hash"})
 */
class HashBench
{
 // ...
}

The group can then be targeted using the command line interface.

Skipping Subjects

You can skip subjects by using the @Skip annotation:

<?php

class HashBench extends Foobar
{
 /**
 * @Skip()
 */
 public function testFoobar()
 {
 }
}

Extending Existing Array Values

When working with annotations which accept an array value, you may wish to
extend the values of the same annotation from ancestor classes. This can be
accomplished using the extend option.

<?php

abstract class AbstractHash
{
 /**
 * @Groups({"md5"})
 */
 abstract public function benchMd5();
}

/**
 * @Groups({"my_hash_implementation"}, extend=true)
 */
class HashBench extends AbstractHash
{
 public function benchMd5()
 {
 // ...
 }
}

The benchHash subject will now be in both the md5 and
my_hash_implementation groups.

This option is available on all array valued (plural) annotations.

Recovery Period: Sleeping

Sometimes it may be necessary to pause between iterations in order to let
the system recover. Use the @Sleep annotation, specifying the number of
microseconds required:

<?php

class HashBench
{
 /**
 * @Iterations(10)
 * @Sleep(1000000)
 */
 public function benchMd5()
 {
 md5('Hello World');
 }
}

The above example will pause (sleep) for 1 second after each iteration.

Note

This can be overridden using the --sleep option from the CLI.

Microseconds to Minutes: Time Units

If you have benchmarks which take seconds or even minutes to execute then the
default time unit, microseconds, is going to be far more visual precision than you
need and will only serve to make the results more difficult to interpret.

You can specify output time units using the @OutputTimeUnit
annotation (precision is optional):

<?php

class HashBench
{
 /**
 * @Iterations(10)
 @OutputTimeUnit("seconds", precision=3)
 */
 public function benchSleep()
 {
 sleep(2);
 }
}

The following time units are available:

	microseconds

	milliseconds

	seconds

	minutes

	hours

	days

Mode: Throughput Representation

The output mode determines how the measurements are presented, either time
or throughput. time mode is the default and shows the average execution
time of a single revolution. throughput shows how many operations
are executed within a single time unit:

<?php

class HashBench
{
 /**
 * @OutputTimeUnit("seconds")
 * @OutputMode("throughput")
 */
 public function benchMd5()
 {
 hash('md5', 'Hello World!');
 }
}

PHPBench will then render all measurements for benchMd5 similar to
363,874.536ops/s.

Warming Up: Getting ready for the show

In some cases, it might be a good idea to execute a revolution or two before
performing the revolutions time measurement.

For example, when benchmarking something that uses an class autoloader, the
first revolution will always be slower because the autoloader will not to be
called again.

Use the @Warmup annotation to execute any number of revolutions before
actually measuring the revolutions time.

<?php

// ...
class ReportBench
{
 // ...

 /**
 * @Warmup(2)
 * @Revs(10)
 */
 public function benchGenerateReport()
 {
 $this->generator->generateMyComplexReport();
 }
}

As with revolutions, you may also specify an array.

Timeout: Bailing when things take too long

Use the @Timeout annotation to specify the maximum number of seconds
before an iteration timesout and fails. The following example will fail after
0.1 seconds:

<?php

// ...
class ReportBench
{
 /**
 * @Timeout(0.1)
 */
 public function benchGenerateReport()
 {
 sleep(1);
 }
}

Assertions

Warning

Assertions are absolute, benchmarks are relative to the environment they
are running in.

If you use them in a continuous integration environment the stability of
your build will depend on the state of the environment, you can prevent
failing builds with the –tolerate-failure option.

Assertions allow you to specify what a valid range is for a given statistic,
for example, “the mean must be less than 10”.

<?php

// ...
class AssertiveBench
{
 // ...

 /**
 * @Assert(stat="mean", value="10")
 */
 public function benchGenerateReport()
 {
 // ...
 }
}

By default the comparator is < (less than), you can also specify >
using the comparator key:

<?php

class AssertiveBench
{
 // ...

 /**
 * @Assert(stat="mean", value="10", comparator=">")
 */
 public function benchGenerateReport()
 {
 // ...
 }
}

The default time unit for assertions is microseconds, but you can specify any
supported time unit and you can also change the mode to throughput:

<?php

class AssertiveBench
{
 // ...

 /**
 * @Assert(stat="mean", value="10", comparator=">", time_unit="milliseconds", mode="throughput")
 */
 public function benchGenerateReport()
 {
 // ...
 }
}

The above will assert that an average of more than 10 operations are completed
in a millisecond. See Microseconds to Minutes: Time Units and Mode: Throughput Representation for more information.

For more information about assertions see Asserters.

Benchmark Runner

The benchmark runner is a command line application which executes the
benchmarks and generates reports from the results.

Running Benchmarks

To run all benchmarks in a specific directory:

$ phpbench run /path/to

To run a single benchmark class, specify a specific file:

$ phpbench run /path/to/HashBench.php

To run a single method of a single benchmark class, use the --filter
option:

$ phpbench run /path/to/HashBench.php --filter=benchMd5

Groups can be specified using the --group option:

$ phpbench run /path/to/HashBench.php --group=hash

Note

Both --subject and --group options may be specified multiple
times.

Filtering

The --filter option accepts a regex without the delimiters and matches
against a string such as HashBench::benchMd5, so all of the following are
valid:

$ phpbench run /path/to --filter=benchFoo
$ phpbench run /path/to --filter=HashBench::benchFoo
$ phpbench run /path/to --filter=Hash.*

Overriding Iterations and Revolutions

The benchmark runner can override the number of revolutions and
iterations which will be executed:

$ phpbench run /path/to/HashBench.php --iterations=10 --revs=1000

You may specify these options multiple times.

Overriding the Bootstrap

You can override or set the Bootstrap using the
--bootstrap option:

$ phpbench run /path/to/HashBench.php --bootstrap=vendor/autoload.php

Assertions: Overriding and Toleration

Use the --assert option to introduce or override assertions:

$ phpbench run /path/to/HashBench.php --assert="stat: mode, value: 10"

This will assert that ALL variants must have a mode less than 10. For more
information on assertions see Assertions.

Failing assertions will cause PHPBench to exit with code 2. If you want to
tolerate failures (f.e. in an unstable CI environment) you can use the
--tolerate-failure option.

For more information about assertions see Asserters.

Generating Reports

By default PHPBench will run the benchmarks and tell you that the benchmarks
have been executed successfully. In order to see some useful information you
can specify that a report be generated.

By default there are two reports default and aggregate, and they can
be specified directly using the --report option:

$ phpbench run /path/to/HashBench.php --report=default

See the Reports chapter for more information on how you can
configure reports.

Note

If you want to suppress all other output and only show the output from the
reports you can use the --progress=none option. This is especially useful when
piping a report to another program.

Retry Threshold

PHPBench is able to dramatically improve the stability of your benchmarks by
retrying the iteration set until all the deviations in time between iterations
fit within a given margin of error.

You can set this as follows:

$ phpbench run /path/to/HashBench.php --retry-threshold=5

The retry threshold is the margin of error as a percentage which is allowed
between deviations. Generally the lower this value, the higher the stability,
but the longer it will take for a set of iterations to be resolved.

By default the retry threshold is disabled.

You may also set the retry threshold in the
configuration.

Changing the Output Medium

By default PHPBench will output the reports to the console using the
console output. The output can be changed using the --output option.
For example, to render a HTML document:

$ phpbench run /path/to/HashBench.php --report=default --output=html

Example of HTML output:

[image: _images/html.png]
See the Report Renderers chapter for more information.

Deferring Report Generation

You can store benchmark results which can then later be used later to generate reports.

There are two ways to do this: Firstly you may dump the results to an XML
file, secondly you can use a storage driver to persist them.

To dump the benchmark results to an XML file use the --dump-file option:

$ phpbench run /path/to/HashBench.php --dump-file=report.xml

You can then generate reports using the report command:

$ phpbench report --file=report.xml --report=default

Alternatively (or in a addition) you may use the storage driver as follows:

$ phpbench run /path/to/HashBench.php --store

Then generate reports using a query:

$ phpbench report --query='benchmark: "MyBench"' --report=aggregate

This method is highly mighty. See the storage chapter for
more information.

Comparing Results

You can compare the results of two or more sets of results using the compare
report.

First you should generate a suite result document for each separate
implementation and specify a tag:

.. configure for implementation A
$ phpbench run --tag=impl_a --store
.. configure for implementation B
$ phpbench run --tag=impl_b --store
.. configure for implementation C
$ phpbench run --tag=impl_c --store

Now you can use the report command and specify the compare report to
compare the results for each implementation side-by-side:

$ phpbench report --uuid=tag:impl_a --uuid=tag:impl_b --uuid=tag:impl_c --report='{extends: compare, compare: tag}'
+--------------+----------+--------+--------+------+-----------------+-----------------+-----------------+
| benchmark | subject | groups | params | revs | tag:impl_a:mean | tag:impl_b:mean | tag:impl_c:mean |
+--------------+----------+--------+--------+------+-----------------+-----------------+-----------------+
| HashingBench | benchMd5 | | [] | 1000 | 0.957μs | 0.939μs | 0.952μs |
+--------------+----------+--------+--------+------+-----------------+-----------------+-----------------+

Progress Reporters

By default PHPBench issues a single . for each benchmark subject executed.
This is the dots progress reporter. Different progress reporters can be
specified using the --progress option:

[image: _images/blinken.gif]
blinken progress logger.

$ phpbench run /path/to/HashBench.php --progress=classdots

The built-in progress loggers are:

	verbose: The default logger, format: [R<retry nb.>] I<iter nb.> P<parameter set nb.> <mean|mode per rev.> <standard deviation per rev.> <relative standard deviation per rev.>).

	travis: Similar to verbose, but with no fancy console manipulation. Perfect for travis.

	dots: Shows one dot per subject (like PHPUnit).

	classdots: Shows the benchmark class, and then a dot for each subject.

	blinken: Highly visual progress logger.

	histogram: Shows a histogram with 8 vertical levels and 16 bins for each
iteration set.

Note

PHPBench is aware of the CONTINUOUS_INTEGRATION environment variable set
by travis. If this variable is set then the default logger will
automatically be changed to travis and the dots progress logger will
not do any fancy stuff.

All of the progress reports contain the following footer:

3 subjects, 30 iterations, 30000 revs, 0 rejects
min [mean mode] max: 0.84 [1.13 1.12] 1.66 (μs/r)
⅀T: 33987μs μSD/r 0.16μs μRSD/r: 14.92%

It provides a summary of the minimum, mean, mode, and maximum subject times, given
microseconds per revolution. ⅀T is the aggregate total time, μSD/r is the mean
standard deviation, and μRSD/r is the mean relative standard deviation.

Warning

These summary statistics can be misleading. You should always verify the
individual subject statistics before drawing any conclusions.

Configuration File

A custom configuration file can be specified with the --config option. See
the Configuration chapter for more information on configuration.

Exit codes

The following exit codes can occur:

	0: Everything was fine.

	1: Errors encountered in benchmarks.

	2: Assertion failures.

	255: Internal error

Reports

PHPBench includes a primitive reporting framework. It allows for report
generators which generate reports from one or more
benchmarking suite results.

Reports can be generated for each run that your perform, or using
historical data by using the report command.

The reports are then renderered using a report renderer to various outputs (e.g. console, HTML, markdown, CSV).

This chapter will deal with generating reports and assume that the console
renderer is used.

Generating Reports

To report after a benchmarking run:

$ phpbench run --report=aggregate

Multiple reports can be specified:

$ phpbench run --report=aggregate --report=env

The report command operates in a similar way but requires you to provide some
data, either from XML dumps or from a storage query:

$ phpbench report --query='benchmark: "MyBench"' --report=aggregate

For more information on storage and the query language see Storage and Querying.

Configuring Reports

All reports can be configured either in the report configuration or directly on the command line using a simplified
JSON encoded string instead of the report name:

$ phpbench run --report='generator: "table", cols: ["suite", "subject", "mean"], break: ["benchmark"]'

In each case it is required to specify the generator key which corresponds
to the registered name of the report generator.

You may also extend an existing report configuration:

$ phpbench run --report='extend: "aggregate", break: ["benchmark", "revs"]'

This will merge the given keys onto the configuration for the aggregate
report [https://github.com/phpbench/phpbench/blob/master/lib/Extension/config/report/generators.php].

Table Generator

For details about the table generator see the table
reference, this section will simply offer practical examples.

Note

Here we give the report configuration as an argument on the command line,
it is important to note that reports can also be defined in the
configuration.

Selecting columns

You can select exactly which columns you need using the cols option. If you make a mistake an exception
will be thrown showing all the valid possibilities, see the columns reference.

The following examples will make use of this option for brevity.

Breaking into multiple tables

Use the break option to split tables based on the unique values of the
given keys:

$ phpbench run --report='generator: "table", break: ["revs"], cols: ["subject", "mean"]'

 revs: 1
 +-------------+---------+
 | subject | mean |
 +-------------+---------+
 | benchMd5 | 3.300μs |
 | ... | ... |
 +-------------+---------+

 revs: 10
 +-------------+---------+
 | subject | mean |
 +-------------+---------+
 | benchMd5 | 0.700μs |
 | ... | ... |
 +-------------+---------+

 revs: 100
 +-------------+---------+
 | subject | mean |
 +-------------+---------+
 | benchMd5 | 0.447μs |
 | ... | ... |
 +-------------+---------+

Multiple columns may be specified:

$ phpbench run --report='generator: "table", break: ["benchmark", "revs"], cols: ["subject", "mean"]'

benchmark: HashingBenchmark, revs: 1
+-------------+---------+
| subject | mean |
+-------------+---------+
| benchMd5 | 3.400μs |
| benchSha1 | 4.700μs |
| benchSha256 | 4.700μs |
+-------------+---------+

benchmark: HashingBenchmark, revs: 10
+-------------+---------+
| subject | mean |
+-------------+---------+
| benchMd5 | 0.720μs |
| benchSha1 | 0.970μs |
| benchSha256 | 1.320μs |
+-------------+---------+

Comparing Values

To compare values by factor horizontally, use the compare option, for example to compare mean times against revs:

$ phpbench run --report='generator: "table", compare: "revs", cols: ["subject", "mean"]'

 +-------------+-------------+--------------+---------------+
 | subject | revs:1:mean | revs:10:mean | revs:100:mean |
 +-------------+-------------+--------------+---------------+
 | benchMd5 | 3.800μs | 0.890μs | 0.535μs |
 | benchSha1 | 5.600μs | 0.930μs | 0.651μs |
 | benchSha256 | 5.500μs | 1.490μs | 1.114μs |
 +-------------+-------------+--------------+---------------+

By default the mean is used as the comparison value, you may also select different value columns using compare_fields, e.g. to show both mean and mode:

$ phpbench run --report='generator: "table", compare: "revs", cols: ["subject", "mean"], compare_fields: ["mean", "mode"]'

Note

The compare function “squashes” the non-statistical columns which have the same
values - sometimes this may result in there being more than one “statstic”
for the compare column. In such cases extra columns are added suffixed
with an index, for example: revs:10:mean#1.

Difference Between Rows

You can show the percentage of difference from the lowest column value in the table (\(($meanOrMode / $min) - 1) * 100\)) by specifying the diff column. By
default this will use the mean, you can specify a different value using the diff_col option, e.g. diff_col: "mode".

$ phpbench run --report='generator: "table", cols: ["subject", "revs", "mean", "diff"]'
+---------------+------+--------+---------+
| subject | revs | mean | diff |
+---------------+------+--------+---------+
| benchVariance | 100 | 6.73μs | 0.00% |
| benchStDev | 100 | 8.11μs | +20.39% |
+---------------+------+--------+---------+

Sorting

Sorting can be achieved on multiple columns in either ascending (asc) or descending (desc) order.

$ phpbench run --report='generator: "table", cols: ["subject", "revs", "mean", "diff"], sort: {subject: "asc", mean: "desc"}'

Default Reports

Configured reports can be executed simply by name as follows:

$ phpbench run --report=aggregate

The following are reports defined by PHPBench, other reports can be defined in your configuration.

aggregate

Shows aggregate details of each set of iterations:

+--------------+-------------+--------+--------+------+-----+------------+---------+---------+---------+---------+---------+--------+-------+
| benchmark | subject | groups | params | revs | its | mem_peak | best | mean | mode | worst | stdev | rstdev | diff |
+--------------+-------------+--------+--------+------+-----+------------+---------+---------+---------+---------+---------+--------+-------+
| HashingBench | benchMd5 | | [] | 1000 | 10 | 1,255,792b | 0.931μs | 0.979μs | 0.957μs | 1.153μs | 0.062μs | 6.37% | 1.00x |
| HashingBench | benchSha1 | | [] | 1000 | 10 | 1,255,792b | 0.988μs | 1.015μs | 1.004μs | 1.079μs | 0.026μs | 2.57% | 1.04x |
| HashingBench | benchSha256 | | [] | 1000 | 10 | 1,255,792b | 1.273μs | 1.413μs | 1.294μs | 1.994μs | 0.242μs | 17.16% | 1.44x |
+--------------+-------------+--------+--------+------+-----+------------+---------+---------+---------+---------+---------+--------+-------+

It is uses the table generator, see table for more information.

default

The default report presents the result of each iteration:

-------------+-------------+--------+--------+------+------+------------+----------+--------------+----------------+
| benchmark | subject | groups | params | revs | iter | mem_peak | time_rev | comp_z_value | comp_deviation |
+--------------+-------------+--------+--------+------+------+------------+----------+--------------+----------------+
| HashingBench | benchMd5 | | [] | 1000 | 0 | 1,255,792b | 0.985μs | +1.00σ | +0.20% |
| HashingBench | benchMd5 | | [] | 1000 | 1 | 1,255,792b | 0.981μs | -1σ | -0.2% |
| HashingBench | benchSha1 | | [] | 1000 | 0 | 1,255,792b | 0.992μs | +1.00σ | +0.05% |
| HashingBench | benchSha1 | | [] | 1000 | 1 | 1,255,792b | 0.991μs | -1σ | -0.05% |
| HashingBench | benchSha256 | | [] | 1000 | 0 | 1,255,792b | 1.533μs | +1.00σ | +8.68% |
| HashingBench | benchSha256 | | [] | 1000 | 1 | 1,255,792b | 1.288μs | -1σ | -8.68% |
+--------------+-------------+--------+--------+------+------+------------+----------+--------------+----------------+

It is uses the table generator, see table for more information.

env

This report shows information about the environment that the benchmarks were
executed in.

+--------------+---------+--+
| provider | key | value |
+--------------+---------+--+
| uname | os | Linux |
| uname | host | dtlt410 |
| uname | release | 4.2.0-1-amd64 |
| uname | version | #1 SMP Debian 4.2.6-1 (2015-11-10) |
| uname | machine | x86_64 |
| php | version | 5.6.15-1 |
| unix-sysload | l1 | 0.52 |
| unix-sysload | l5 | 0.64 |
| unix-sysload | l15 | 0.57 |
| vcs | system | git |
| vcs | branch | env_info |
| vcs | version | edde9dc7542cfa8e3ef4da459f0aaa5dfb095109 |
+--------------+---------+--+

Generator: table.

Columns:

	provider: Name of the environment provider (see
PhpBench\\Environment\\Provider in the code for more information).

	key: Information key.

	value: Information value.

See the Environment chapter for more information.

Note

The information available will differ depending on platform. For example,
unit-sysload is unsurprisingly only available on UNIX platforms, where
as the VCS field will appear only when a supported VCS system is being
used.

Storage and Querying

PHPBench allows benchmarking results to be persisted using a configured
storage driver. You can inspect the results with either the show or
report commands.

Configuring a Storage Driver

PHPBench will use XML storage by default, which is fine for most purposes. If
you want advanced functionality (e.g. the ability to query benchmarks) then
you can install the Doctrine DBAL extension.

The XML storage driver will place benchmarks in a folder called _storage
by default, this can be changed in the configuration as follows:

{
 "xml_storage_path": "_storage"
}

Storing Results

In order to store benchmarking runs you simply need to give --store option
when running your benchmarks:

$ phpbench run --store

You can tag runs with the --tag option to make them easier to reference
(more on this later):

$ phpbench run --store --tag=my_tag_name

Tags must be alpha-numeric and may also contain underscores.

Viewing the History

Once you have stored some benchmark runs you can use the history command to
see what you have got:

$ phpbench log
run 875c827946204db23eadd4b10e76b7189e10dde2
Date: 2016-03-19T09:46:52+01:00
Branch: git_log
Tag: <none>
Scale: 1 subjects, 60 iterations, 120 revolutions
Summary: (best [mean] worst) = 433.467 [988.067] 504.600 (μs)
 ⅀T: 59,284.000μs μRSD/r: 9.911%

run 9d38a760e6ebec0a466c80f148264a7a4bb7a203
Date: 2016-03-19T09:46:39+01:00
Branch: git_log
Tag: <none>
Scale: 1 subjects, 30 iterations, 30 revolutions
Summary: (best [mean] worst) = 461.800 [935.720] 503.300 (μs)
 ⅀T: 28,071.600μs μRSD/r: 4.582%

...

Report Generation

You can report on a single given run ID using the show command:

$ phpbench show 9d38a760e6ebec0a466c80f148264a7a4bb7a203

You may also specify a different report with the --report option. In order
to compare two or more reports, you should use the report command as
detailed in the following section.

Pseudo UUIDs

UUIDs are difficult to work with. Phpbench allows you to use a number of
“pseudo” uuids.

latest

It is possible to specify “meta” UUIDs, such as latest:

$ phpbench show latest

And also you may use the -<n> suffix to view the “nth” entry in
the history from the latest:

$ phpbench show latest-1

Would show the second latest entry. Meta UUIDs can be used anywhere where you
would normally specify a UUID, including queries.

tag:

Allows you to reference a tagged run. If you store a suite:

$ phpbench run --store --tag=my_tag

Then you can reference it with tag:my_tag

$ phpbench show tag:my_tag

Querying

Important

The XML storage driver does not support querying, if you require this
functionality install the Doctrine DBAL extrension.

PHPBench uses a query language very similar to that of MongoDB. A simple
example:

$ phpbench report --report=aggregate --query='subject: "benchMd5", run: 239"'

Would show the results in an aggregate report for the benchmarking subject
benchMd5 from run 239.

A more complex example:

$ phpbench report --report=aggregate --query='$and: [{ subject: "benchMd5" }, { date: { $gt: "2016-02-09" } }]'

This would generate a suite collection containing all the benchMd5
subjects created after 2016-02-09.

Logical Operators

Logical operators must have as a value an array of constraints.

$and

Return only the records which meet both of the given constraints:

$and: [{ field1: "value1" }, { field2: "value2" }]

$or

Return only the records which meet at least one of the given constraints:

$or: [{ field1: "value1" }, { field2: "value2" }]

Logical Comparisons

$eq

Note that that equality is assumed if the value for a field is a scalar:

subject: "benchMd5"

The verbose equality comparison would be:

subject: { $eq: "benchMd5" }

$neq

Non-equality comparison:

run: { $neq: 12 }

$gt, $gte

Greater than and greater than or equal to comparisons:

date: { $gt: "2016-02-10" }

$lt, $lte

Greater than and greater than or equal to comparisons:

date: { $lt: "2016-02-10" }

$in

Matches when the field value matches any one of the given values:

run: { $in: [10, 11, 12] }

$regex

Provides regular expression capabilities for pattern matching strings in
queries:

benchmark: { $regex: "FooBarBench" }

benchmark: { $regex: "Foo.*Bench" }

Fields

The following fields are currently available for querying:

	benchmark: The benchmark class name.

	subject: The subject name (e.g. benchMd5)

	revs: The number of revolutions.

	date: The date.

	run: The run ID (as inferred from the phpbench history command).

	group: The group name.

	param: Query a parameter value, parameter name in square brackets.

Parameters may be queried with the param field - the parameter name should
be enclosed in square brackets as follows:

param[nb_elements]: 10

param[points]: { $gt: 50 }

Archiving

Archiving provides a way to export and reimport data from and to the
configured storage. This allows you to:

	Backup your results (for example to a GIT repository).

	Migrate to other storage drivers.

By default PHPBench is configured to use an XML archiver, which will dump
results to a directory in the current working directory, _archive.

To archive:

$ phpbench archive

To restore:

$ phpbench archive --restore

Both operations are idempotent - they will skip any existing records.

You may configure a different archiver in the configuration:

{
 "archiver": "xml"
}

Environment

PHPBench will try and record as much information about the current environment
as it can. This is facilitated by “environment provider” classes which
implement the PhpBench\\Environment\\ProviderInterface and are registered
with the environment_provider tag in the DI container.

This information is recorded in the XML document:

<env>
 <uname os="Linux" host="dtlt410" release="4.2.0-1-amd64" version="#1 SMP Debian 4.2.6-1 (2015-11-10)" machine="x86_64"/>
 <php version="5.6.15-1"/>
 <unix-sysload l1="1.04" l5="0.63" l15="0.55"/>
 <vcs system="git" branch="env_info" version="edde9dc7542cfa8e3ef4da459f0aaa5dfb095109"/>
</env>

This information can be readily viewed with the env report and can also be
displayed when using the table report generator.

GIT

Class: PhpBench\\Environment\\Provider\\Git.
Available: When PHPBench is run in the root directory of a GIT
repository.

The GIT provider will provide VCS information, including the branch and
vesion (i.e. the commitsh).

PHP

Class: PhpBench\\Environment\\Provider\\Php.
Available: Always

Provides the PHP version.

Uname

Class: PhpBench\\Environment\\Provider\\Uname.
Available: Always

Provides information about the operating system obtained through the
php_uname [http://php.net/manual/en/function.php-uname.php] command.

Unix Sysload

Class: PhpBench\\Environment\\Provider\\UnixSysload.
Available: On non-windows systems.

Provides the CPU load [https://en.wikipedia.org/wiki/Load_(computing)] for the following time periods: 1 minute, 5 minutes and
15 minutes.

Baseline

Class: PhpBench\Environment\Provider\Baseline
Available: Always

Provides baseline measurements, by default it will provide mean times for
executing the following micro-benchmarks (1000 revolutions):

	nothing: An empty method.

	md5: Calculation of an MD5 hash.

	file_rw: File read and write.

These measurements can help determine the relative speed of the system under
test compared to other systems.

Report Generators

PHPBench generates reports using report generators. These are classes which
implement the PhpBench\Report\GeneratorInterface and produce a report XML
document which will later be rendered by using a renderer (the console renderer by default).

This chapter will describe the default report generators.

table

The table generator is the main report generator - it is the generator that allows you to analyze your
benchmarking results.

Class: PhpBench\Report\Generator\TableGenerator.

Options:

	title: (string) Title of the report.

	description: (string) Description of the report.

	cols: (array) List of columns to display, see below.

	break: (array) List of columns; break into multiple tables based on
specified columns.

	compare: (string) Isolate and compare values (default mean time)
based for the given column.

	compare_fields: (array) List of fields to compare based on the column
specified with compare.

	diff_col: (string) If the diff column is given in cols, use
this column as the value on which to determine the diff (default
mean).

	sort: (assoc_array) Sort specification, can specify multiple columns;
e.g. { mean: "asc", benchmark: "desc" }.

	pretty_params: (boolean) Pretty print the params field.

	iterations: (boolean) Include the results of every individual
iteration (default false).

	labels: (array) Override the default column names, either as a
numerical array or as a colName => label hash.

Columns

Here we divide the columns into three sets, conditions are those columns
which determine the execution context, variant statistics are aggregate
statistics relating to a set of iterations and iteration statistcs relate to
single iterations (as provided when iterations option is set to true).

Conditions:

	suite: Identifier of the suite.

	date: Date the suite was generated,

	stime: Time the suite was generated

	benchmark: Short name of the benchmark class (i.e. no namespace).

	benchmark_full: Fully expanded name of benchmark class.

	subject: Name of the subject method.

	groups: Comma separated list of groups.

	params: Parameters (represented as JSON).

	revs: Number of revolutions.

	its: Number of iterations.

Variant Statistics:

	mem_peak: (mean) Peak memory used by each iteration as retrieved by memory_get_peak_usage [http://php.net/manual/en/function.memory-get-peak-usage.php].

	mem_final: (mean) Memory allocated to PHP at the end of the benchmark
(memory_get_usage).

	mem_real: (mean) Memory allocated by the system for PHP at the end of the benchmark (memory_get_usage(true)).

	min: Minimum time of all iterations in variant.

	max: Maximum time of all iterations in variant.

	worst: Synonym for max.

	best: Synonym for min.

	sum: Total time taken by all iterations in variant,

	stdev: Standard deviation [https://en.wikipedia.org/wiki/Standard_deviation]

	mean: Mean time taken by all iterations in variant.

	mode: Mode [https://en.wikipedia.org/wiki/Mode_(statistics)] of all iterations in variant.

	variance: The variance [https://en.wikipedia.org/wiki/Variance] of the variant.

	rstdev: The relative standard deviation [https://en.wikipedia.org/wiki/Coefficient_of_variation].

Iteration Statistics:

	mem_peak: Peak memory used by each iteration as retrieved by memory_get_peak_usage [http://php.net/manual/en/function.memory-get-peak-usage.php].

	mem_final: Memory allocated to PHP at the end of the benchmark
(memory_get_usage).

	mem_real: Memory allocated by the system for PHP at the end of the benchmark (memory_get_usage(true)).

	iter: Index of iteration.

	rej: Number of rejections the iteration went through (see
Retry Threshold.

	time_net: Time in (microseconds [https://en.wikipedia.org/wiki/Microseconds]) it took for the iteration to complete.

	time_rev: Time per revolution (time_net / nb revs).

	z-vaue: The number of standard deviations [https://en.wikipedia.org/wiki/Z-score] away from the mean of the
iteration set (the variant).

In addition any number of environment columns are added in the form of
<provider_name>_<key>, so for example the column for the VCS branch would
be vcs_branch.

composite

This report generates multiple reports.

Class: PhpBench\Report\Generator\CompositeGenerator.

Options:

	reports: (array): List of report names.

env

This is a simple generator which generates a report listing all of the
environmental factors for each suite.

Class: PhpBench\Report\Generator\EnvGenerator.

Options:

	title: (string) Title of the report.

	description: (string) Description of the report.

Report Renderers

Reports are rendered to an output medium using classes
implementing the PhpBench\Report\RendererInterface.

The configuration for a renderer is known here as an output. The user may
define new outputs either in the configuration file or
on the CLI. The renderer may also supply default outputs.

console

Renders directly to the console.

Class: PhpBench\Report\Renderer\ConsoleRenderer.

Options:

	table_style: (string) Table style to use, one of: default,
compact, borderless or symfony-style-guide.

Default outputs:

	console: Renderers the report directly to the console. This is the
default output method.

xslt

The XSLT renderer the path to an XSLT template which will be used to transform
the report XML document into an output file.

Class: PhpBench\Report\Renderer\XsltRenderer.

Options:

	title: (string): Title to use for the document (where applicable).

	template: (string): Path to the XSL template.

	file: (string): Path to the output file (existing files will be
overwritten). You can use the %report_name% token, it will be replaced
with the name of the report.

Default outputs:

	html: Render the report as a single HTML page.

	markdown: Render the report as a GitHub Flavored Markdown [https://help.github.com/articles/github-flavored-markdown:] document.

delimited

The delimited renderer outputs the report as a delimited value list (for
example a tab separated list of values). Such data can be easily imported into
applications such as GNUPlot [http://www.gnuplot.info/].

Class: PhpBench\Report\Renderer\DelimitedRenderer.

Options:

	delimiter: (string): Path to the output file (existing files will be
overwritten).

	header: (boolean): If a header should be included in the output.

Default outputs:

	delimiter: The delimiter to use.

debug

Output the raw XML of the report document. Useful for debugging.

Options:

none

Default outputs:

	debug: Outputs the report document’s XML.

Asserters

In PHPBench, asserters are classes which perform assertions on the results of
a benchmark variant.

comparator

The comparator asserter simply allows you to assert that a given metric was
less than or greater than a given value, in the given unit of measurement,
with a given tolerance.

It is the default (and currently only) asserter.

Options:

	comparator: Comparator to use (< or >), default <.

	mode: Either throughput or time.

	stat: Aggregate metric to measure against, e.g. mean, mode,
min, max, stdev, etc. Default mean.

	time_unit: Time unit, e.g. milliseconds, seconds. Default
microseconds.

	tolerance: If the value is less than or greater than the tolerance a
warning will be issued, but no failure will occur.

	value: Assert to this value.

For example:

Assert less than 1234 microseconds:

/**
 * @Assert(1234)
 */
public function benchFoobar()
{
 // ...
}

Assert a throughput greater than 0.25ops/µs:

/**
 * @Assert(0.25, comparator=">", "mode": "thoughput")
 */
public function benchFoobar()
{
 // ...
}

Or on the command line:

$ phpbench run --assert='value: 0.25, comparator: ">", mode: "throughput"'

Configuration

Unless overridden with the --config option, PHPBench will try to load its
configuration from the current working directory. It will check for the
existence each of the files phpbench.json and phpbench.json.dist in
that order and use one if it exists.

{
 "bootstrap": "vendor/autoload.php",
 "path": "path/to/benchmarks",
 "outputs": {
 "my_output": {
 "extends": "html",
 "file": "my_report.html",
 "title": "Hello World"
 }
 },
 "reports": {
 "my_report": {
 "extends": "aggregate"
 }
 }
}

Note

Typically you should use phpbench.json.dist in your projects. This
allows the end-user of your library to override your configuration by creating
phpbench.json.

Bootstrap

You can include a single file, the bootstrap file, before the benchmarks are
executed. Typically this will be the class autoloader (e.g.
vendor/autoload.php).

It is specified with the bootstrap key:

{
 "bootstrap": "vendor/autoload.php",
}

Note

You can override (or initially set) the bootstrap using the
--bootstrap CLI option.

Path

Specify the default path to the benchmarks:

{
 "path": "tests/benchmarks"
}

Progress Logger

Specify which progress logger to use:

{
 "progress": "dots"
}

Retry Threshold

Set the Retry Threshold:

{
 "retry_threshold": 5
}

Reports

List of report definitions:

{
 "reports": {
 "my_report": {
 "extends": "aggregate",
 "exclude": ["benchmark"]
 }
 }
}

The key is the name of the report that you are defining, and the object
properties are the options for the report. Each report must specify either
the generator or extends key, specifying the generator or report to extend respectively.

See the Report Generators chapter for more information on report
configuration.

Outputs

Custom output definitions:

"outputs": {
 "my_output": {
 "extends": "html",
 "file": "my_report.html",
 "title": "Hello World"
 }
}

Note that:

	The key of each definition is the output name.

	As with reports, each definition MUST include either the renderer or
extends key.

	All other options are passed to the renderer as options.

See the Report Renderers chapter for more information.

Time Unit and Mode

Specify the default time unit. Note that this will be overridden by
individual benchmark/subjects and when the time-unit option is passed to
the CLI.

{
 "time_unit": "milliseconds"
}

Similarly the Mode: Throughput Representation can be set using the output_mode key:

{
 "output_mode": "throughput"
}

PHP Binary and INI settings

You can change the PHP binary and INI settings used to execute the benchmarks:

{
 "php_binary": "hhvm",
 "php_config": {
 "memory_limit": "10M"
 }
}

Prefixing the Benchmarking Process

You can prefix the benchmarking command line using the php_wrapper option:

{
 "php_wrapper": "blackfire run -q"
}

Note

This can also be set using the --php-wrapper CLI option.

Customizing the subject matching pattern

By default PHPBench will identify subject methods when they have a bench
prefix. It is possible to change the regex pattern used to identify subjects
as follows:

{
 "subject_pattern": "^spin_"
}

The above will allow you to have benchmark class such as:

<?php

class Foobar
{
 public function spin_kde()
 {
 // ...
 }

 public function spin_lcd()
 {
 // ...
 }
}

Note

You can also explicitly declare that methods are benchmark subjects by
using the @Subject annotation.

Disable the PHP INI file

PHP extensions, especially Xdebug, can drastically affect the performance of
your benchmark subjects. You can disable Xdebug and other dynamically loaded
extensions by setting php_disable_ini to true.

{
 "php_disable_ini": true,
 "php_config": {
 "extension": ["json.so"]
 }
}

FAQ

Why does PHPBench slow on Windows?

Process spawning on Windows is more expensive than on Linux, PHPBench spawns
many processes. Actual benchmarking time however is not affected.

Why does PHPBench look terrible on Windows?

PHPBench makes use of ansi escape sequences in most of its progress loggers.
The default Windows console does not support these sequences, so the output
can look very bad.

You can mitigate this by using the travis logger, which does not issue any
of these escape sequences.

You may also consider using Cgywin, emuCon or ansiCon programs to
enhance your console. You may also switch to Linux.

Why do setUp and tearDown methods not automatically get called?

PHPBench supports the annotations BeforeMethods and AfterMethods which
can be placed at the class level and/or the method level. These methods are
plural. If we were to automatically add setUp to the chain then the
annotation would read one thing, but the benchmark would do another (i.e.
execute the method indicated by the annotation and the “magic” setUp method).

If you want to support setUp and tearDown you can create a simple base
class such as:

/**
 * @BeforeMethods({"setUp"})
 * @AfterMethods({"tearDown"})
 */
abstract class BenchmarkCase
{
 public function setUp()
 {
 }

 public function tearDown()
 {
 }
}

Xdebug

The Xdebug extension allows you to easily profile your code using
function traces [https://xdebug.org/docs/execution_trace] or by generating cachegrind profiles [http://xdebug.org/docs/profiler].

The commands are very similar to the standard run command with the
difference that only single iterations are performed.

Note

Xdebug needs to be installed, however it does NOT need to be activated by
default. PHPBench will automatically try and load and configure the
extension even if it is disabled.

Tip

You can use the Xdebug executors with the standard run command by
specifying either xdebug_profile or xdebug_trace with the
--executor option.

Installation

The Xdebug extension is bundled with PHPBench, it just needs to be activated:

{
 "extensions": [
 "PhpBench\\Extensions\\XDebug\\XDebugExtension"
]
}

Alternatively you can activate it directly from the CLI using the
extension option:

$ phpbench xdebug:profile examples/HashBench.php --extension="PhpBench\\Extensions\\XDebug\\XDebugExtension"

Function Tracing

Function tracing provides a simple way to profile your benchmark subjects:

$./bin/phpbench xdebug:trace benchmarks/Micro/Math/StatisticsBench.php

+-----+-------+----------+-----------+-----------+---------------------------------------+--+
| # | Level | Mem | Time | Time inc. | Function | File |
+-----+-------+----------+-----------+-----------+---------------------------------------+--+
| 777 | 4 | 922,976b | 0.015284s | 192μs | PhpBench\Math\Statistics::stdev() | ./benchmarks/Micro/Math/StatisticsBench.php:40 |
| 778 | 5 | 923,024b | 0.015294s | 168μs | PhpBench\Math\Statistics::variance() | ./lib/Math/Statistics.php:29 |
| 779 | 6 | 923,024b | 0.015304s | 34μs | PhpBench\Math\Statistics::mean() | ./lib/Math/Statistics.php:44 |
| 780 | 7 | 923,072b | 0.015313s | 9μs | array_sum() | ./lib/Math/Statistics.php:73 |
| 781 | 7 | 923,120b | 0.015326s | 8μs | count() | ./lib/Math/Statistics.php:79 |
+-----+-------+----------+-----------+-----------+---------------------------------------+--+

You can enable showing arguments using the --show-args option:

$./bin/phpbench xdebug:trace benchmarks/Micro/Math/StatisticsBench.php --show-args
+-----+-------+----------+-----------+-----------+--+--+
| # | Level | Mem | Time | Time inc. | Function | File |
+-----+-------+----------+-----------+-----------+--+--+
| 777 | 4 | 922,912b | 0.021977s | 244μs | PhpBench\Math\Statistics::variance(| ./benchmarks/Micro/Math/StatisticsBench.php:33 |
| | | | | | array (0 => 10, 1 => 100, 2 => 42, 3 => 84, 4 => 11, 5 => 12, 6 => 9, 7 => 6) | |
| | | | | | ??? | |
| | | | | |) | |
| 778 | 5 | 922,960b | 0.021992s | 49μs | PhpBench\Math\Statistics::mean(| ./lib/Math/Statistics.php:44 |
| | | | | | array (0 => 10, 1 => 100, 2 => 42, 3 => 84, 4 => 11, 5 => 12, 6 => 9, 7 => 6) | |
| | | | | |) | |
| 779 | 6 | 923,008b | 0.022005s | 13μs | array_sum(| ./lib/Math/Statistics.php:73 |
| | | | | | array (0 => 10, 1 => 100, 2 => 42, 3 => 84, 4 => 11, 5 => 12, 6 => 9, 7 => 6) | |
| | | | | |) | |
| 780 | 6 | 923,056b | 0.022024s | 11μs | count(| ./lib/Math/Statistics.php:79 |
| | | | | | array (0 => 10, 1 => 100, 2 => 42, 3 => 84, 4 => 11, 5 => 12, 6 => 9, 7 => 6) | |
| | | | | |) | |
+-----+-------+----------+-----------+-----------+---+--+

Profiling (cachegrind)

The profile command is very similar to the run command:

$ phpbench xdebug:profile examples/HashBench.php --progress=none

3 profile(s) generated:

 profile/_HashingBenchmark::benchMd5.P0.cachegrind
 profile/_HashingBenchmark::benchSha1.P0.cachegrind
 profile/_HashingBenchmark::benchSha256.P0.cachegrind

A single profile is generated for each subject in the benchmark and placed in
the directory profile by default.

The generated profiles can be viewed with a cachegrind viewer such as
kcachgrind (linux) or webgrind [https://github.com/jokkedk/webgrind] (web based).

[image: ../_images/profile.png]
It is possible to automatically launch a GUI for each of the profiles using
the --gui option. By default PHPBench will attempt to locate the
kcachegrind executable. If you do not have kcachegrind you can specify
a different executable using the --gui-bin option.

DBAL

The DBAL extension provides a storage driver for storing results to any
database supported by doctrine dbal [http://www.doctrine-project.org/projects/dbal.html]. By default it will use a file-based sqlite [https://www.sqlite.org/]
database which will be created in your current working directory and named
.phpbench.sqlite.

Currently it will only store basic metrics for each iteration, time,
memory (peak), z-value, deviation and the summary statistics.

Warning

The DBAL extension does not provide an advanced storage capability and may
be dropped from the core before the 1.0 release. In this case it will be
available as an officially unsupported extension in a separate repository.

Installation

The DBAL depends on the doctrine/dbal package. If you are using PHPBench
as a dependency of your project you will need to ensure that you have this
package installed, install it with composer:

$ composer require --dev "doctrine/dbal"

You will then need to enable the extension (which is bundled with PHPBench) in your
phpbench.json file:

{
 "storage": "dbal",
 "extensions": [
 "PhpBench\\Extensions\\Dbal\\DbalExtension"
]
}

In addition to adding the extension we also set sqlite as our storage
driver.

Configuration

You may configure the dbal with the storage.dbal.connection key in your
phpbench.json file. For example, to change the path of the sqlite
database:

{
 ...
 "storage.dbal.connection": {
 "driver": "pdo_sqlite",
 "path": "/path/to/database"
 }
}

Or to use another database driver, e.g. mysql:

{
 ...
 "storage.dbal.connection": {
 "driver": "pdo_mysql",
 "dbname": "myproject_benchmarks",
 "user": "root",
 }
}

If you are not using the pdo_sqlite driver, you will need to initialize
the database using the dbal:migrate command detailed below.

Warning

Multiple projects cannot currently share the same sqlite database.

Migration

The dbal:migrate command will update the database schema to the latest
version, if the database is “new” then it will create the schema.

Important

Whilst it is normally safe to run this command, there is no guarantee that
your data will be migrated properly. If you care about your data, then it
is advisable to archive your data before migrating the database.

Running the command with no options will tell you how many operations need to
be executed on the database. To actually migrate you need to supply the
--force option:

$ phpbench dbal:migrate --force

You may also manually inspect the statements that will be executed using the
--dump-sql option:

$ phpbench dbal:migrate --dump-sql

PHPBench Reports

The Reports extension wraps a given storage driver (XML by default) and
additionally sends the results over HTTP to a phpbench-reports [https://github.com/phpbench/phpbench-reports] server.

PHPBench reports is a web application which indexes the results for
multiple projects in elastic search and provides visualization.

[image: ../_images/e641e491b9938f9e30d49f7e6e991a26b51cac97.png]

Installation

Enable the phpbench-reports [https://github.com/phpbench/phpbench-reports] extension and set your storage driver to reports:

{
 "extensions": {
 "PhpBench\\Extensions\\Reports\\ReportsExtension"
 }
}

Configuration

Set the storage driver to reports, you will need to configure both the URL
where phpbench-reports [https://github.com/phpbench/phpbench-reports] can be found, and the API key (which can be
requested from the PHPBench reports server):

{
 "storage": 'reports',
 "storage.reports.url" => "https://reports.phpbench.org",
 "storage.reports.api_key" => "<api-key>"
}

Note

The API key can also be provided via. an environment variable, see “travis
integration” below.

By default it will wrap the XML storage driver, this can be changed as
follows:

{
 'storage.reports.inner_driver' => 'blah'
}

Travis Integration

Warning

Travis is heavily-loaded and quite unsuitable for benchmarking purposes,
but it’s potentially interesting.

You can use the travis [https://docs.travis-ci.com/user/encryption-keys/#Usage] CLI application to encrypt the API key env var:

$ travis encrypt REPORTS_API_KEY=<your API key> --report=your/repo

You can then add the encrypted env var to .travis.yml as follows:

env:
 global:
 secure: "<encrypted key here>"

Configure PHPBench to run as normal with the –store option:

script:
 - ./vendor/bin/phpbench run --store

Custom Extensions

Note

Check out the example extension here [https://github.com/phpbench/phpbench-example-extension].

Writing custom extensions is quite easy, it is necessary to create a container
extension and then register that extension in your configuration:

<?php

namespace Acme\PhpBench\Extension\Example;

use PhpBench\DependencyInjection\ExtensionInterface;
use PhpBench\DependencyInjection\Container;
use Acme\PhpBench\Extension\Example\Command\FooCommand;
use Acme\PhpBench\Extension\Example\Progress\FooLogger;

class ExampleExtension implements ExtensionInterface
{
 public function getDefaultConfig()
 {
 // default configuration for this extension
 return [
 'acme.example.message' => 'Hello World',
 'acme.progress.character' => 'x'
];
 }

 public function load(Container $container)
 {
 // register a command
 $container->register('acme.example.foo', function (Container $container) {
 return new FooCommand(
 $container->getParameter('acme.example.message')
);
 }, ['console.command' => []]);

 // register a progress logger
 $container->register('acme.example.progress_logger', function (Container $container) {
 return new FooLogger($container->get('benchmark.time_unit'));
 }, ['progress_logger' => ['name' => 'foo']]);

 }

 // called after load() can be used to add tagged services to existing services.
 public function build(Container $container)
 {
 }
}

Note

The third argument of the register method, this is a list of
tags. Tags tell PHPUnit what these services are and how to use them.
Checkout the CoreExtension [https://github.com/phpbench/phpbench/blob/master/lib/Extension/CoreExtension.php] to investigate all of the available tags.

and activate the extension in your phpbench.json file:

{
 "extensions": [
 "Acme\\PhpBench\\Extension\\Example\\ExampleExtension"
]
}

PHPBench as a project dependency

If you are using PHPBench as a require-dev dependency of your project, and
the extension is in your projects autoloader, then you are done,
congratulations!

PHPBench as a PHAR

If you are using the PHAR version of PHPBench then you will need to tell
PHPBench where it can find an autoloader for your extension (or extensions):

{
 "extension_autoloader": "/home/daniel/www/phpbench/phpbench-example-extension/vendor/autoload.php"
}

If you have multiple extensions you may consider creating an “extension
project” e.g.

$ mkdir phpbench-extensions
$ cd phpbench-extensions
$ composer require vendor/my-phpbench-extension-1
$ composer require vendor/my-phpbench-extension-2

and then using the autoload.php of this project.

Index

 _static/up-pressed.png

_static/up.png

_images/e641e491b9938f9e30d49f7e6e991a26b51cac97.png
/ dantleech / phpbench-reports / ImportBench

Benchmark

Results for ImportBench over time

105000 suite-date 2017-12-22 10:48:07
100000 suite-config-path /project/phpbench.json.dist
95000
0000 suite-uuid 133c90660f73dfc70e6167c05bb0e3727e16632f
£s000 énv-uname-os Linux
e0000
15000 env-uname-host 647563101393
70000 env-uname-release 4.4.0-101-generic
65000
env-uname-version #124~14.04.1-Ubuntu SMP FriNov 10 19:05:36 UTC 20 —
55000 env-uname-machine x86_64
30000 env-php-version 7.20
T T
° 4 3 2 1 &fiv-php-extensions ¢ Core, date,libxmi, openssl, pere, salite3, zlb,
W benchimport, 0
env-unix-sysload-11 0.9
env-unix-sysload-15 0.53
benchimport
env-unix-sysload-115 0.2
i env-basdline-nothing ~ 0,015020370483398
Date Suite Host VCS Branch
env-baseline-mds 0.24509429931641
5days env-baseline-file rw 1.9540786743164
o 133c94741006397442760e1b4d6B7F3(410926f Ob19aaB5123a 7 1710 95060005 92,914.00us —61,442.22us— 2185%
Sdays e ol . e emg e emema e e e

_images/html.png
PHPBench Benchmark Results

benchmark subject group params revs time memory deviati
HashBench | benchFoobar 0 1 o 26000045 | 592b | 0.00%
stability | 100.00%
average | 26.0000ps | 592b

Generated 2015-09-27 10:30:23 by PHPBench v0.5

_images/blinken.gif
~/w/p/phpbench 33y ./bin/phpbench run examples --progress=blinken --precision=3 --iterations=60 --revs=10000 --ret
ry-threshold=ll

1:editorM B5%8H#¥ 3:bash- 4:zsh S:zsh 6:2sh

_images/profile.png
File View Go Settings Help

L3 open | GaBack ~ & Forward - 4h Up 'H % Relative | 55) cycle Detection »|[Time
Flat Profile. # X [HashingBenchmark->benchMds,
search: [[(No Grouping) =1 | ypes | callers Al callers | callee Map | Source ot
Incl. Self Location Incl. Distance | Called | Caller
Tmain} PhpBenc! | [EEN 100.00 T 1000 B {man} (PhpBench7gyGh)
T
1.23 1.23 1000 M php::hash php:inter
0.40 0.40 1000 i php:irand phpinter
0.04 0.04 1 o php:ijson_encode phpinter
0.01 0.01 1 W php:ige_disable phpinter
0.01 0.01 1 o php:iob_start phpinter
0.01 0.01 1 M require_once:/home/dani... HashBen
0.00 0.00 1 M php::mémory_get_peak_u... phprinter
0.00 0.00 2 B php::microtime phpinter
0.00 0.00 1 o php:iob_end_clean phpinter
0.00 0.00 1 M php::ob_get_contents phpinter
| I— _>l_I
@ | | | PAEEJCalless __call Graph [A Callees] Caller Maj <|»

“HashingBenchmarks:benchMds. P0. cachegrind [1] - Total Time Cost: 18 052

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to PHPBench’s documentation!

 		
 Introduction

 		
 Why PHPBench?

 		
 Are There Other Benchmarking Frameworks?

 		
 Installing

 		
 Install as a PHAR package

 		
 Composer Install

 		
 Composer Global Install

 		
 Quick Start

 		
 Create your project

 		
 PHPBench configuration

 		
 Creating and running a benchmark

 		
 Increase Stability

 		
 Customize Reports

 		
 Configuration

 		
 Writing Benchmarks

 		
 Improving Precision: Revolutions

 		
 Verifying and Improving Stability: Iterations

 		
 Subject (runtime) State: Before and After

 		
 Benchmark (external) State: Before and After

 		
 Parameterized Benchmarks

 		
 Groups

 		
 Skipping Subjects

 		
 Extending Existing Array Values

 		
 Recovery Period: Sleeping

 		
 Microseconds to Minutes: Time Units

 		
 Mode: Throughput Representation

 		
 Warming Up: Getting ready for the show

 		
 Timeout: Bailing when things take too long

 		
 Assertions

 		
 Benchmark Runner

 		
 Running Benchmarks

 		
 Filtering

 		
 Overriding Iterations and Revolutions

 		
 Overriding the Bootstrap

 		
 Assertions: Overriding and Toleration

 		
 Generating Reports

 		
 Retry Threshold

 		
 Changing the Output Medium

 		
 Deferring Report Generation

 		
 Comparing Results

 		
 Progress Reporters

 		
 Configuration File

 		
 Exit codes

 		
 Reports

 		
 Generating Reports

 		
 Configuring Reports

 		
 Table Generator

 		
 Selecting columns

 		
 Breaking into multiple tables

 		
 Comparing Values

 		
 Difference Between Rows

 		
 Sorting

 		
 Default Reports

 		
 aggregate

 		
 default

 		
 env

 		
 Storage and Querying

 		
 Configuring a Storage Driver

 		
 Storing Results

 		
 Viewing the History

 		
 Report Generation

 		
 Pseudo UUIDs

 		
 latest

 		
 tag:

 		
 Querying

 		
 Logical Operators

 		
 Logical Comparisons

 		
 Fields

 		
 Archiving

 		
 Environment

 		
 GIT

 		
 PHP

 		
 Uname

 		
 Unix Sysload

 		
 Baseline

 		
 Report Generators

 		
 table

 		
 Columns

 		
 composite

 		
 env

 		
 Report Renderers

 		
 console

 		
 xslt

 		
 delimited

 		
 debug

 		
 Asserters

 		
 comparator

 		
 Configuration

 		
 Bootstrap

 		
 Path

 		
 Progress Logger

 		
 Retry Threshold

 		
 Reports

 		
 Outputs

 		
 Time Unit and Mode

 		
 PHP Binary and INI settings

 		
 Prefixing the Benchmarking Process

 		
 Customizing the subject matching pattern

 		
 Disable the PHP INI file

 		
 FAQ

 		
 Why does PHPBench slow on Windows?

 		
 Why does PHPBench look terrible on Windows?

 		
 Why do setUp and tearDown methods not automatically get called?

 		
 Xdebug

 		
 Installation

 		
 Function Tracing

 		
 Profiling (cachegrind)

 		
 DBAL

 		
 Installation

 		
 Configuration

 		
 Migration

 		
 PHPBench Reports

 		
 Installation

 		
 Configuration

 		
 Travis Integration

 		
 Custom Extensions

 		
 PHPBench as a project dependency

 		
 PHPBench as a PHAR

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

